WoolyAI Acceleration Service

A GPU cloud with "Actual GPU Resources Used" billing, NOT "Time Used" billing

Cloud Service built on top of our WoolyStack CUDA Abstraction Layer

Your billing is based on actual GPU memory usage and core processing utilization

You execute your Pytorch projects in your CPU infrastructure

CUDA instructions are abstracted, transformed, regenerated and execute on WoolyAI GPU cloud service

docker exec wooly-container wooly credits 994239242 docker exec -it wooly-container python3 pytorch-project.py torch.cuda.get_device_name(0): WoolyAI model.safetensors: 100%|████████████████████| 3.09G/3.09G [00:14<00:00, 220MB/s] generation_config.json: 100%|██████████████| 3.90k/3.90k [00:00<00:00, 37.1MB/s] preprocessor_config.json: 100%|████████████████| 340/340 [00:00<00:00, 3.86MB/s] tokenizer_config.json: 100%|█████████████████| 283k/283k [00:00<00:00, 4.93MB/s] added_tokens.json: 100%|████████████████████| 34.6k/34.6k [00:00<00:00, 161MB/s] Device set to use cuda:0
Coming Soon

Abstracted CUDA execution for cross-platform compatibility

Configure multi vendor GPU infrastructure and present it as a unified GPU cluster.

Can execute unmodified PyTorch CUDA workloads independent of the underlying GPU hardware.

Execute ML with your native container orchestration setup.

Execute concurrent workloads on the cluster and manage SLAs

Deploy on Your Own Infrastructure –
Cloud, On-Prem or Air-Gapped.